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Rolling structures at large shear strain 
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Abstract - -At  large shear strain, shear criteria are often obliterated or become ambiguous. From examination of 
both natural examples and experimental models we describe a new criterion called 'rolling structure' ,  widely 
represented in sheared rocks. A typical rolling structure is composed of a rigid or competent  object (e.g. 
porphyroclast, boudin, fossil, etc.) with two tails asymmetrically disposed around it. In most cases tails are of the 
same material as that of the rotating object, and result from strain softening and grain-size reduction at the object 
periphery, forming a mantle. Z and S asymmetries of rolling structures represent dextral and sinistral senses of 
shearing, respectively. Tails must not be confused with pressure shadows which usually present an opposite 
asymmetry for a given shear sense. Besides the determination of the sense of shear, the occurrence of these 
structures allows a minimum estimate of the strain intensity in strongly sheared rocks, since rolling structure 
length is proportional to shear strain. 

INTRODUCTION 

IN HIGHLY sheared rocks, determination of the sense of 
shear is often problematic. Features which can be used 
as shear criteria tend to develop from mechanical 
instabilities during shear deformation and are charac- 
terized by their asymmetry (Lagarde 1978, Burg et al. 
1981, Simpson & Schmid 1983, Choukroune et al. 1987, 
Etchecopar & Malavieille, 1987). At large shear strain, 
the early developed asymmetrical structures tend to be 
modified or obliterated because of extreme flattening 
about the foliation plane (the 21 ,~2 plane of finite strain). 
For example, C- and S-planes become parallel (Berthd et 
al. 1979a, Lister & Snoke 1984) and pressure shadows 
around clasts tend to lose their sigmoidal shape. 

Later stage incremental features, such as asymmetric 
C'-shear bands may eventually develop during the pro- 
gressive shearing and provide a useful additional shear 
criterion (Berth6 et al. 1979b, Platt & Vissers 1980, 
Lister & Snoke 1984). Generally, however, it is difficult 
to determine the sense of shear at large finite shear 
strain. In this paper we discuss natural examples and 
present experimental models of rolling structures that 
are produced by the rotation of competent objects in a 
ductile matrix during large shearing deformation. These 
are called here rolling structures (Van Den Driessche 
1986) and consist of a rigid object surrounded by asym- 
metrically rotated tails. The asymmetry of a rolling 
structure is seen to persist and amplify with the evolving 
deformation. Two end-member types can be separated, 
according to the nature and the origin of the tails. Firstly, 
in mylonites and ultramylonites feldspar porphyroclasts 
are progressively isolated in a grain-size reducing matrix. 
In this case, tail material is derived from the periphery of 
the clast. A second type of rolling structures results from 
the deformation of pre-existing planar features in the 
matrix that are rotated around rotating objects (boudins, 
pebbles, etc.). 

Experimental models of such structures have been 
reproduced in simple-shear experiments, using Plas- 
ticine objects of rectangular shape embedded into a 
Newtonian silicone putty matrix. The experimentally 
produced structures are comparable to natural examples 
and verify similar previous theoretical and experimental 
work (Ghosh & Ramberg 1976, Shoneveld 1977, Fer- 
nandez et al. 1983, Lister & Williams 1983, Passchier & 
Simpson 1986, Passchier 1987). Experimental models 
(Van Den Driessche 1986) are also used to establish 
quantitative relationships between the geometry and 
dimensions of rolling structures and the finite strain. 

ROLLING STRUCTURES IN MYLONITES 

In mylonites, grain-size reduction is characteristic, so 
that porphyroclasts are preserved within a very fine- 
grained, strain-softened matrix best observed in 21~.3 
sections (i.e. parallel to the stretching lineation and 
perpendicular to the foliation). Granites from the Santa 
Catalina metamorphic core complex in southeastern 
Arizona are deformed by a crustal shear zone (work with 
G. Guerin, in preparation). Mylonites of this shear zone 
provide beautiful examples of rolling structures which 
are seen within a biotite-rich matrix. Metamorphism 
reaches the amphibolite facies. Rolling structures consist 
of feldspar porphyroclasts, surrounded by strongly elon- 
gated tails (Figs 1 and 4a). In most cases, the clast 
margins (mantles) appear highly strained. Tails are in 
continuity with the porphyroclast mantles and consist of 
dynamically recrystallized fine-grained feldspar (see also 
Passchier 1987). Total tail length can reach 10 times the 
mean diameter of the porphyroclast. 

An ideal tail geometry can be described as follows 
(Van Den Driessche 1986): on both sides of the clast 
each tail displays a bulk sigmoidal shape, with an inflec- 
tion point in the vicinity of the clast (Fig. 1). Beyond this 
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Fig. 1. Geometric characteristics of a typical rolling structure. 

point, the tail curvature slowly dies out at a distance 
approximately equal to the clast long axis. Further away 
from the clast, the tail is rectilinear and concordant with 
the foliation. Between the inflection point and the clast, 
the tail is strongly curved around the clast margin. The 
two tails are termed upper and lower with respect to the 
mylonite foliation surface S whose continuation goes 
through the centre of the clast, thus defining a bulk 
asymmetry (Fig. 1). Near the inflection points, the curva- 
ture of the upper and lower tails are, respectively, 
concave and convex to the top. The occurrence of tail 
inflections can be used to indicate rolling of the clast. 

The bulk asymmetry of the rolling structure is charac- 
teristic of the sense of shear: S and Z patterns correspond 
to sinistral and dextral sense of shear, respectively (Fig. 
2). This is identical to the asymmetry of 'drag' folds 
developed in non-coaxial deformation. The short, often 
inverted, limb of such a fold corresponds to the position 
of the rigid clast within a rolling structure (Fig. 2). 
According to Lister & Williams (1983), both rolling 
structures and 'drag' folds in shear zones result from the 
vorticity partitioning of flow. 

Tails of rolling structures can present tight appressed 
isoclonal folds, similar to fold patterns in the mylonitic 
matrix (Fig. 3). Examination of sections parallel to 2123 
and to 2223 planes show that the axes of tail folds are 
subparallel to the stretching lineation, so that folds in 
2123 planes can be interpreted as passive folds (Donath 
& Parker 1964). This tends to demonstrate that in most 
cases tails deform with the ductile matrix which sur- 
rounds the clasts. In other words, tails of rolling struc- 
tures act predominantly as passive markers during pro- 
gressive shear deformation. 

The following conclusions can be drawn from the 
natural examples in mylonites. 

(1) Rolling structures result from the heterogeneous 
deformation of a rotating rigid object in a ductile matrix; 
tails are produced by grain-size reduction and softening 
of clast margins, producing mantles. 

(2) S and Z patterns are characteristic of sinistral and 
dextral senses of shear, respectively. 

(3) Passive folding of tails is indicative of a low viscos- 
ity contrast between the matrix and the tails. 

(4) The observed tail geometry results from 
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Fig. 2. S and Z asymmetry of rolling structures, allowing the determination of the sense of shear. Note comparison with 
'drag' fold geometry in a shear regime. 
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Fig. 3. Natural  example of a folded tail to a rolling structure. 

heterogeneous deformation of the matrix around the 
object. Once initiated, tails behave as passive markers 
during progressive shear deformation. 

ASSOCIATED STRUCTURES 

The concept of rolling structure as a shear criterion 
can be extended to any rigid object which rotates in a 
ductile matrix. Figure 4(b) shows an example of boudin- 
age in a flysch series of alternating limestone and marl 
layers that has undergone a combination of layer- 
parallel shear and layer-parallel elongation (Merle & 
Brun 1984). The sense of shear is given by cleavage 
refraction. Boudins have been rotated in the sense of 
shear. The bedding parallel cleavage in marl layers is 
contorted around boudins in a fashion similar to the 
basic pattern of a rolling structure (Fig. 4b). The rolling 
structures are accentuated by drag of sedimentary planar 
markers around the rotating objects as modelled by 
Ghosh & Ramberg (1976). In this case no tails are 
produced from the periphery of the objects, but the 
resulting geometry is identical to rolling structures in 
mylonites. 

EXPERIMENTAL MODELS 

Procedure 

To model rolling structures in shear zones, it has been 
assumed that the non-coaxial deformation in shear zones 
approaches progressive simple shear. Experiments in 
simple shear have therefore been carried out: (1) to 

investigate the progressive development of rolling struc- 
ture around a rotating rigid object in a viscous matrix; 
and (2)to establish a possible quantitative relationship 
between the rolling structure dimensions and strain 
intensity. 

The model consists of a rigid object embedded within 
a viscous matrix of silicone putty (Rhodorsil Gomme 
Special GS1R manufacturered by Rhrne Poulenc, 
France). The rigid object is made of Plasticine and has a 
rectangular section with an axial ratio of 1 : 2 to simulate 
a common feldspar clast (Fig. 5). The silicone has an 
almost perfect linear dependence of stress upon strain 
rate, whereas Plasticine has a strongly non-linear depen- 
dence (see Cobbold & Quinquis 1980). During progres- 
sive shearing, the object rotates without internal defor- 
mation, while the silicone matrix flows. Several initial 
angles between the object long axis and the shear plane 
(a) of -45 ,  0, +45 and +90 ° have been tested. 

In a first series of experiments, the object is sur- 
rounded by a thin coloured silicone layer to simulate 
clast mantle (Fig. 5). This layering is prepared by mixing 
small amounts of finely powdered iron oxide (Fe203) 
with the silicone putty. The viscosity contrast between 
these thin coloured layers and the pure silicone matrix is 
very low and does not exceed 1.5 : 1. 

Apparatus 

The model (13 x 6.5 x 2 cm) is placed into a simple- 
shear machine (Fig. 6) which consists of two mobile 
lateral walls, which can be moved in opposite senses by 
two jacks. Displacement of the jacks is powered by a 
stepping motor controlled by microcomputer (Fig. 6). 

The model lies over a basal plate which is coated with 
a liquid soap lubricant which minimizes friction against 
the lower surface of the model. The upper surface is free. 
The perfect adherence of the silicone putty to the lateral 
walls allows the shear couple to be integrally transmitted 
into the model. It is confined at its extremities by two 
silicone buffers of the same viscosity (Fig. 6). 

The shear box is designed for attaining finite shear 
strains up to 25. To escape strong 3-D strain effects at the 

sillc°ne+Fe203 ~ ~ ~ " " ' " ~ ~ ~  ~ ~ ~ "~" 

p l a s ~ ~  ~ ~ ~" 

Fig. 5 (a). Rigid object made of Plasticine and surrounded by a thin coloured silicone layer, to simulate a clast mantle. 
During shearing, tails develop from the thin coloured silicone layer, as shown systematically. (b) Deformation of a passive 
object of the same dimensions as the object  in (a). Note  that the rolling structure length in (a) is nearly equal to the maximum 

length of the deformed object  in (b). 
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Fig. 6. Shear apparatus with electronic control. The shear machine is seen at the final stage of an experiment. The sense of 
shear is dextral. 

f ree surface ,  low shear  s t ra in  ra tes  were  i m p o s e d  (# = 
10 -3 -- 10 -4 S - ] ) .  

Visual display 

Once  the mode l  is p laced  into the shear  box,  a s t ra in  
grid is p r i n t ed  on the  free surface.  The  most  conven ien t  
grid is one  of  small  r egu la r ly  spaced  circles which de fo rm 
into  s t ra in  el l ipses.  This  al lows obse rva t ion  of  evolv ing  
progress ive  s t ra in  dur ing  the exper imen t s .  The  bulk  3-D 
finite s train s ta te  of  m o d e l l e d  rol l ing s t ructures  was 
obse rved  by dissect ing the m o d e l  af ter  f reezing to 
- 30°C, to l imit  any induced  in te rna l  d e f o r m a t i o n  due  to 
cutt ing.  

RESULTS 
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Geometric observations 

Figures  7 and 8 show mode l s  which have  u n d e r g o n e  
d i f ferent  finite shear  strains.  C la s t - t a i l  sys tems ana-  
logous  to na tu ra l  rol l ing s t ruc tures  have  been  ob t a ined  
for  any s tar t ing o r i en t a t i on  ( a )  of  the  ob jec t .  F in i te  
shear  s train values  7 vary  f rom 7 to 13. 

As  in the  na tu ra l  examples ,  the  mode l s  show the 
fol lowing character is t ics :  (1) concave  and convex  inflec- 
t ions of  the u p p e r  and  lower  tails,  respec t ive ly ;  (2) a Z 
pa t t e rn ,  resul t ing f rom the imposed  dext ra l  shear .  

II" -45 

~' ~8 ~ 9  

Fig. 7. Examples of modelled rolling structures, a is the starting angle 
between the object long axis and the shear plane. In experiments 6 and 
7 the objects had the same starting position and have undergone a 
similar shear strain of ca 11. The object in 7 has rotated much more 
because the viscosity of the matrix silicone putty was lowered by 
heating from flood-lights. In experiment 9 (Fig. 8a) the starting angle 

(a) was at -45 ° clockwise from the shear plane. 



Rol l ing  s t ructures  at large shear  s train 

Fig. 4 (a). Example of rolling structures developed from feldspar porphyroclasts (Santa Catalina metamorphic core 
complex, southeastern Arizona). (b). Rolling structures developed from a boudinaged competent limestone layer in a flysch 

series of the Parpaillon Nappe (French Alps). 
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qg. 8 (a). Experiment  "roll 9' with starting angle a = - 4 5  ° and ~, = 8 (see Fig. 7a). (b) Experimental  rolling structure wfl 
folded tail. Compare  the geometry with the natural example in Fig. 3. 
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R o l l i n g  s t r u c t u r e s  a t  l a r g e  s h e a r  s t r a i n  

Fig. 9. Evolution of strain at the free surface. Note the development of passive isoclinal folds in the matrix in the vicinity of 
the right-upper and left-lower corners of the object. Curve envelopes of strain ellipses in (a) and (b) have been traced on 
Fig. l l (b )  & (c), respectively. (c) Detail of finite strain state y (bulk) = 9 immediately adjacent to the object. Note the 
extreme elongation of ellipses near the object upper-left and lower-right comers. Conversely, near the upper-right and 

lower-left some ellipses seem to have undeformed. 
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Geometrical similarities between modelled and natu- 
ral rolling structures confirm that tails behave essentially 
as passive markers of the heterogeneous deformation 
induced by rigid clast rotation in a ductile matrix. Some 
models show folded tails markedly resembling the natu- 
ral examples (Fig. 8b). The occurrence of folded tails in 
the models depends on the viscosity contrast between 
the matrix silicone and the thin coloured silicone layer. 
This contrast can be accentuated by mixing larger 
amounts of powdered iron oxide which makes the 
silicone putty more competent. The viscosity contrast, 
though low (1.5/1), may act as a weak mechanical insta- 
bility responsible for folding of the tails. However, 
models in which the viscosity contrast between the 
silicone matrix and the silicone mantle is very low can 
show either folded or non-folded tails. When folds occur, 
they are extremely isoclinal (Fig. 8b) and result from the 
kinematic amplification of geometrical perturbations 
during tail development (Cobbold & Quinquis 1980). A 
significant relationship exists between tail length and 
strain intensity. This is described in more detail below. 

Progressive deformation at the free surface (Fig 9) 

In these experiments no coloured silicone layer has 
been added around the object. The grid circles are 
progressively deformed into ellipses, indicating the 
strain intensity. Rotational velocity of the object is not 
constant during progressive simple shear. The curve 
giving the value of a as a function of ~, is similar to that 
obtained by Fernandez et al. (1983) (Fig. 10). 

In Fig. 11, curved envelopes of strain ellipses have 
been traced to emphasize the strain pattern induced by 
the rigid body rotation in passive layers. At the first 
stages, layers are warped adjacent to the upper and 
lower faces of the object. Warping progressively evolves 
into strongly appressed isoclinal folds (Figs. 9 and 11). 
Note that the strain pattern in the matrix is asymmetrical 
with respect to the object. Folds in the matrix developed 
in the same way for any initial object position. On both 
sides of the object, the short limbs of folds define an 

oblique band parallel to the/~1 axis away from the object 
(Figs. 9 and 11). At first sight, this band appears as a 
shear zone, but strain gradients and principal strain 
trajectories, displayed by the shape of ellipses, show that 
it is certainly not a shear zone (compare with Ramsay & 
Graham 1970, and Ramsay 1980). It can be seen: (1) that 
zones of equivalent strain intensity surround the rigid 
object and cross-cut the band; and (2) that the band is 
parallel to the ~.1 axis of strain ellipses where the layer 
boundaries are not disturbed (i.e. away from the object, 
in homogeneous simple shear). So this band results from 
the passive amplification of a fold induced by unsteady- 
state flow around the object. This process can be com- 
pared with one described and theorized by Hudleston 
(1976) and experimentally modelled by Brun & Merle 
(1987). Small-scale natural examples of such a passive 
folding process have been described by Berthe & Brun 
(1980, fig. 4). In some natural examples, oblique bands 
connected with clasts have been interpreted as shear 
bands but may in fact have resulted from the process 
described above. Immediately adjacent to the object, 
strain appears to be extremely heterogeneous (Fig. 9c). 
The centres of ellipses are strongly displaced from their 
initial positions adjacent to the object boundaries. The 
long axes of some reference ellipses are warped and can 
reach 9 times the initial circle radius. Stretching of these 
ellipses is higher than in zones which are not disturbed by 
the object rotation and only affected by imposed simple 
shear. Strain intensity in the matrix is thus high adjacent 
to the object. 

In a second series of experiments, the object is sur- 
rounded by a thin coloured layer. Figure 12 shows how 
tails developed with evolving strain marked by the 
deformed grid at the free surface of the model. For any 
initial position of the object, tails initiate in the principal 
extension direction of incremental strain (Fig. 12). Away 
from the object, tails are stretched in the direction of 
bulk finite strain (21) and show a rectilinear pattern. 
Near the object, tails are warped by object rotation, 
resulting in the characteristic geometry of rolling struc- 
tures (Figs. 7 and 8). 
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Fig. 10. Variations of the angular rotation of a rigid object vs shear strain. 
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Fig. 11. 'Layers' of strain ellipses demonstrate progressive passive folding in the matrix for increasing simple-shear 
deformation. 

Relationships between rolling structure length and finite 
strain 

Experiments show that rolling structure length is a 
function of: (1) strain intensity; (2) axial ratio of the thin 
silicone layer surrounded object; and (3) the starting 
orientation of the object (Fig. 14). More precisely, 
rolling structure length L is proportional to a passive 
stretched segment of line d that makes an initial angle of 
45 ° with the shear plane and passes through the centre of 
the object (Fig. 14a). If a and b are, respectively, the 
long and short object axes, the initial length of this 
segment of line (d) is equal to b - sin 45 °, b + sin 45 °, a 
and b for objects with initial starting orientations (a)  of 
90, 0, +45 and - 4 5  °, respectively. Rolling structure 
lengths (L) have been graphically predicted in Fig. 14(a) 
for a 7 value of 10, an initial object axial ratio of two and 
four different object starting orientations. Figure 14(b) 
and (c) shows the good fit between these predictions and 
the experimental data. 

Rolling structure length can also be theoretically pre- 
dicted for large finite shear strains. At large shear strain 
(7 > 5), the 7 value approaches the value of principal 
stretch 21/z, so that)t I/2 -~ y (see Ramsay 1967, figs. 3-21). 
Because tails develop parallel to the incremental strain 
axis during the first stage of the progressive shearing in 
models, the final length of the rolling structure (L) is 
almost equal to the 21/2 value of finite strain (assuming 

that the initial length of the segment of line at 45 ° to the 
shear plane is equal to 1). In practical terms, shear strain 
can be obtained in the models from the ratio between the 
total length of the rolling structure (L) and the length of 
the initial segment of line (d) so that 7 = L/d. 

DISCUSSION 

From field evidence described in this paper, we con- 
sider that rolling structure tails behave almost passively 
in the surrounding matrix. Previous studies of rolling 
structures (Van Den Driessche 1986, Passchier 1987) 
have proposed that the tail material comes from clast 
mantle, and that grain-size reduction in this mantle 
results from strain softening (Passchier 1987). There- 
fore, the rolling structures considered here cannot be 
equivalent to pressure-shadow clast systems in which 
tails grow onto the clast. Thus, the experiments were 
designed to model a purely passive process. In the 
models, the thin coloured silicone layer which surrounds 
the rigid object, represents the softened mantle 
observed in natural clasts (Van Den Driessche 1986, 
Passchier 1987). Models show that strain intensity is 
much higher in the matrix adjacent to the object than 
away from it. Although no simple relation can be post- 
ulated between strain intensity and strain softening, this 
process would seem to have been activated during the 
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rotation). (e) Graph of a values (angle between the tail orientation and the shear plane) vs shear strain (7) for the 
experiments with different starting positions. Note the very good fit between the theoretical curve of 2 t axis orientation vs 
shear strain and experimental data. It shows that rolling structure tails develop in the ). t direction for any starting positions 
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Fig. 14. Relationships between rolling structure length and shear strain. (a) Graphical prediction of roiling structures length, 
L, with respect to the object starting orientation (a) for a shear strain of 10 and an object axial ratio of 2 (see text for 

explanation). (b) and (c) Predicted lengths and experimental data, respectively, vs starting orientation (a) for y = 10. 

rotation of the clast. So the modelled rolling structures 
correspond to a relatively advanced stage of progressive 
shear in natural examples. As demonstrated by experi- 
ments, and assuming simple-shear deformation in mylo- 
nites, a minimum shear strain estimate can be deduced 
from the ratio between clast mean dimension and rolling 
structure length, especially when the axial ratio is equal 
to 1. For natural examples, such a relationship is appli- 
cable because tail initiation requires high strain inten- 
sity. Shear strain will be an underestimate because clast 
mantle thickness is difficult or impossible to determine, 
so that object (clast + mantle) dimensions will be 
always minimized. Nevertheless the relation that exists 
between rolling structure length and shear strain can be 
a very useful method of estimating strain intensity in 
mylonites, particularly where traditional methods can- 
not be used. 

P.S. R.S. 

® 
Fig. 15. Comparison between pressure shadow asymmetry and rolling 

structure asymmetry. 

The warping of tails around clasts is an important 
feature that allows the determination of the sense of 
clast rotation, and thus the sense of shear. This charac- 
teristic is not restricted to the rolling structures described 
above, but can also occur in pressure-shadow clast sys- 
tems if the ductility contrast between the tails and matrix 
is sufficiently low. Note that the asymmetry of pressure- 
shadows clast systems is the inverse of the rolling struc- 
ture asymmetry (Van Den Driessche 1986, Passchier & 
Simpson 1986) (Fig. 15). The rolling effect in pressure- 
shadow clast systems may explain some apparent con- 
tradictions in shear-sense determinations from the same 
sample (see, for example Quinquis & Choukroune 1985, 
p. 415). 

CONCLUSIONS 

At large shear strains, rolling structures are very 
useful shear criteria. Natural examples and experimental 
models provide the following conclusions. 

(1) Rolling structures result from strain patterns 
developed by rotating rigid clasts in a ductile matrix. A 
high rheological contrast between the clast and the 
matrix allows the shear induced vorticity in the matrix to 
be converted into spin in the clast. 

SG 9 : 5 / 6 - K  
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(2) S and Z asymmetry of rolling structures indicate 
sinistral and dextral senses of shear, respectively. 

(3) Rolling structure tails act predominantly as pass- 
ive markers during progressive shearing. 

(4) Tail geometry results from strain in the matrix 
which in turn results from rigid body rotation of the 
clasts. 

(5) Development of rolling structures allows an evalu- 
ation of the rheological behaviour of rocks in shear 
zones. 

(6) Rolling structure length is proportional to strain 
intensity; a quantitative estimate of finite shear strain 
can be obtained from the ratio of rolling structure length 
and clast mean dimension. 
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